
SQL Change Guard
This project is a comprehensive solution designed for institutions with high security and regulatory requirements, 
enabling end-to-end management of SQL changes.

The system is built upon key capabilities such as detailed tracking of changes, automatic validation and feedback 
before deployment, controlled execution through approval mechanisms, and post-deployment impact analysis.

Additionally, it ensures secure transmission of query results and full transparency and auditability of all operations 
in line with data privacy principles.

In this way, both operational efficiency is increased and institutional risks are minimized.

https://gamma.app/?utm_source=made-with-gamma


SQL Change Guard

It provides end-to-end management of deployment, validation, versioning, reporting, and query result handling.

Thanks to pre-deployment checks, you can eliminate the risk of manual errors and detect potential misuse even 
before the code goes live.

"This product can reduce your audit preparation time by allowing you to generate audit-ready reports of 
your SQL changes in seconds."

Improved Control and Traceability: Clear processes are established in which every change can be tracked from 
start to finish. Audit logs provide full traceability by showing who made what change and when.

Reduction of Security Vulnerabilities: Review and approval workflows help identify potentially risky changes 
early on, reducing the likelihood of security gaps.

Meeting Compliance Requirements: Many regulations and standards (such as ISO 27001, KVKK, GDPR) require 
change management processes to include specific controls. Process management and auditing help meet these 
requirements.

Reduction of Data Breach Risks: Defining and monitoring access to and processing of sensitive data 
significantly lowers the risk of unauthorized access and data leaks.

Automatic Detection of Manual Data Changes: The system can automatically detect manual data 
modifications, and requires the attachment of supporting documents (e.g., emails, Excel, Word files) as evidence 
at the time of request submission.

Protection of Critical Objects: To control access to critical objects such as accounts and users, these objects can 
be registered in the system (through a one-time input via the interface). If any such objects are encountered 
within a SQL change request, the system automatically triggers critical object access warnings.

https://gamma.app/?utm_source=made-with-gamma


Features of SQL Change Guard
Intelligent Analysis
It extracts the operations and objects within the script, identifies which actions are intended during 
the request submission phase, and applies validations accordingly. Before the script moves to the 
production environment, it ensures all validations are met and, if there are any improper usages, 
provides warnings/errors requesting the change to be corrected.

Detection of Request Dependencies
It detects objects within requests that have been or will be deployed to Test and Production 
environments, identifies if the same objects appear under different requests, and reports them. For 
example, for a stored procedure altered under two different workflows/tickets, the report includes 
the stored procedure name, workflow number, object name, performed statements (ALTER, DROP, 
etc.), and other related request details.

Notification Mechanisms
Notification mechanisms ensure coordination between teams during the implementation processes 
of changes.

Comprehensive Logging
It ensures that all performed actions (schema changes, querying, manual data modifications) are 
recorded.

It provides detailed report generation for all performed operations and identifies dependencies with other 
requests during different deployments.

There is also a separate control mechanism for manual data modification processes. If such a change is intended 
within a script, the user is required to attach supporting documents at the time of the request. The applied change 
can also be tracked in reports along with detailed information about the operation performed.

For queries executed from Test/Production environments, it offers an end-to-end solution (from query submission 
to data delivery to the requesting user). To comply with legal regulations such as KVKK and GDPR, it enables 
encrypted transmission of data at the time of delivery.

Each request is executed within a single transaction, and in case of any error during deployment, a rollback is 
performed to prevent any changes that could compromise data integrity.

https://gamma.app/?utm_source=made-with-gamma


SQL Code Quality and Standards
SQL Change Guard automatically reviews your scripts and detects the warnings explained below at the time of 
change request submission, notifying you accordingly. The severity levels of these warnings (warning, error, 
information) can be adjusted or completely disabled if desired. Additionally, table and other object prefixes used 
can be easily modified from the application9s settings screen.

Critical Warnings and Best Practices

Table and Object Creation / Naming Standards
SQL Change Guard Warning Description Recommendation

Firstly, create temp table as 
CREATE TABLE statement!

Temporary tables should be 
created using CREATE TABLE.

Create temporary tables using 
the syntax: CREATE TABLE 
#TempTable (...).

Function names should start with Function names should start with 
a standard prefix.

Example: Use a prefix like fn_.

Stored procedure names should 
start with

Stored procedure names should 
follow a standard naming 
convention.

Example: The use of the sp_ 
prefix is recommended.

Index names should start with Index names should follow a 
standard format.

Example: Name them using the 
ix_ prefix.

Trigger names should start with A standard prefix should be used 
in trigger naming.

Example: Start with the prefix 
tr_.

View names should start with View names should follow a 
standard naming convention.

Example: The vw_ prefix is 
recommended.

Table/Columns extended 
properties missing!.

When creating tables or columns, 
entries should be made in the 
data dictionary.

A description should be entered 
into the data dictionary each 
time a table or column is created.

https://gamma.app/docs/screenshot
https://gamma.app/?utm_source=made-with-gamma


2. Query and Data Processing Principles

SQL Change Guard Warning Description Recommendation

Nolock should be used when 
accessing tables.

NOLOCK is recommended to 
prevent locking.

Use WITH (NOLOCK) in queries.

It is recommended to choose 
SELECT column names instead of 
(*).

Using SELECT * negatively 
impacts performance.

Select only the necessary 
columns.

It is recommended to write 
columns in INSERT statement.

Columns should be explicitly 
specified in INSERT statements.

Use the syntax: INSERT INTO 
table (col1, col2) VALUES (...).

WHERE condition missing. There is a significant risk if an 
UPDATE or DELETE statement 
lacks a WHERE clause.

Add filters to prevent data loss.

TRUNCATE TABLE query block 
found!

The TRUNCATE TABLE command 
can cause data loss.

Use it with caution.

https://gamma.app/?utm_source=made-with-gamma


3. Transaction Management and Manual Commands

SQL Change Guard Warning Description Recommendation

Manual Begin Transaction 
statement found. Remove 
transaction usage.

Manual transaction management 
increases the risk of errors.

Centralize transaction control.

Manual Commit Transaction 
statement found. Remove 
transaction usage.

Manual use of commit should be 
minimized.

Automatic management should 
be preferred.

Manual Rollback Transaction 
statement found. Remove 
transaction usage.

Avoid manual use of rollback. Avoid code clutter.

EXEC usage (May Contain Manual 
Data Modification Or Transaction 
Usage)

The EXEC command can include 
manual data modifications.

Carefully review its content.

SET NOCOUNT ON statement 
missing.

SET NOCOUNT ON improves 
query performance.

Be sure to include it at the 
beginning of the code.

https://gamma.app/?utm_source=made-with-gamma


4. Coding and Standards Warnings

SQL Change Guard Warning Description Recommendation

Cursor usage query block found!. Using cursors reduces 
performance.

Use set-based operations 
whenever possible.

Procedure input params should 
start with

Input parameters should follow 
the naming standards.

Example: Use the prefix @in_.

Procedure output params should 
start with

There should be a standard 
naming convention for output 
parameters.

Example: The prefix @out_ is 
recommended.

It is recommended that the 
parameters be set to null by 
default.

Parameters should have a default 
value of NULL.

For flexible and error-resistant 
coding.

https://gamma.app/?utm_source=made-with-gamma


Conclusion and Recommendations
Adhering to naming standards facilitates code readability and management.

Query writing rules are important for performance and data security.

Minimizing transactions and manual commands reduces the risk of errors.

Access to critical objects should be monitored and controlled.

These warnings are essential to enhance both application quality and operational security.

https://gamma.app/?utm_source=made-with-gamma


SQL Standards Check

https://gamma.app/?utm_source=made-with-gamma


Change Request Process
Request Creation

The user uploads the SQL script, enters a 
description, provides the ticket/workflow 

number, attaches files if necessary, and enters 
the email addresses to be notified.

Validation
The script is checked against the SQL 
standards defined by the application.

Completion of Request Submission
The request is saved.

Request Deployment to 
Environment
The authorized user reviews the request, 
checks the warnings, and if deemed 
appropriate, executes it to deploy to the 
environment.

Query Result Request Process
Request Creation

The user uploads the query result script, 
enters a description, selects the servers from 

which the request is made, provides the 
ticket/workflow number, enters email 

addresses, and saves the request.

Approval
The administrator reviews and executes the 
request, and the results are displayed on the 
screen.

Data Privacy
Data masking is performed for sensitive data 

when necessary.
Result Distribution
The results are sent in Excel format to the 
individuals specified during request 
submission.

https://gamma.app/?utm_source=made-with-gamma


Query Result Request

https://gamma.app/?utm_source=made-with-gamma


Dependent Change Tickets Report
Report of Dependent Requests and Their Related Objects

https://gamma.app/?utm_source=made-with-gamma


Security Operations Audit Report
Detailed Reports of Users, Roles, and Login Information

https://gamma.app/?utm_source=made-with-gamma


Manual Data Changes Report
Detailed Report of Manually Executed Operations (INSERT/UPDATE/DELETE/EXEC)

https://gamma.app/?utm_source=made-with-gamma


Object Change Frequency Report
Object Change Frequency Report

https://gamma.app/?utm_source=made-with-gamma


Data Modify Change Frequency Report
Frequency Report of Manually Executed Operations (INSERT/UPDATE/DELETE/EXEC)

https://gamma.app/?utm_source=made-with-gamma


Critical Objects Access Report
Generates reports on accesses to objects defined in the Settings > Critical Objects screen.

https://gamma.app/?utm_source=made-with-gamma


Key Problems Addressed by Our Solution
Challenges in Enforcing SQL 
Standards
The difficulty of manually verifying documented 
or undocumented, widely accepted or 
organization-specific standards within changes 
to be made.

Team Coordination
Lack of coordination between teams during the 
implementation of changes.

Rollback Issues
Issues with rollback in case of any problems 
during change implementation.

Access and Logging Issues
Authorization and access controls. Difficulty in 
recording and logging all changes and queries 
performed on databases.

Manual data modification process management and dependency management between different requests are 
also among the key challenges.

KVKK and GDPR Compliance Challenges

In Turkey, organizations are generally required to comply with KVKK regulations.

If a Turkish company provides services to individuals located in the EU, it may also be obligated to comply with 
GDPR for those activities.

https://gamma.app/?utm_source=made-with-gamma


Benefits

Fast and Secure Deployment
Faster changes through automation

Collaboration and Compliance
Team coordination and regulatory compliance

Data Integrity
Prevention of data loss

Sustainable Growth
Contributing to the controlled and sustainable growth of 
continuously expanding databases

Comprehensive Auditing
Providing comprehensive data for audits and queries 
related to database changes and access

The SQL Change Guard system significantly improves organizations9 data management processes by ensuring 
database changes are made securely, controlled, and traceably. The system reduces the workload of technical 
teams while also facilitating compliance with legal regulations.

https://gamma.app/?utm_source=made-with-gamma



